博客
关于我
攻防世界-pwn-200-Writeup
阅读量:572 次
发布时间:2019-03-09

本文共 2103 字,大约阅读时间需要 7 分钟。

pwn-200 Vulnerability Analysis

Overview of the Issue

The sub_8048484 function in the provided code is vulnerable to a stack overflow attack. This function reads data into a buffer using read(0, &buf, 0x100u) which can cause a stack overflow if not handled correctly. The vulnerable code is:

ssize_t sub_8048484() {    char buf;    setbuf(stdin, &buf);    return read(0, &buf, 0x100u); // Overflow here}

Exploiting the Vulnerability

To exploit this vulnerability, we need to analyze how the stack buffer works. The function uses a single-byte buffer and attempts to read data directly into the stack without proper bounds checking. Exploiting this requires understanding how the stack is structured and how overflow affects it.

The key to this exploit is to identify the location where the return address is stored after the stack overflow. By overwriting the return address, we can control the program's flow and gain arbitrary code execution.

Finding libc Base

Using the provided exploit code, the following steps can be taken:

  • Identify the libc base

    After successful exploitation, we can leak the memory address of the write function from libc6-i386_2.23-0ubuntu11_amd64.so. This is done by sending a crafted payload that forces the program to use the overwritten return address as the write function's target.

  • Calculate libc_base

    Once the write function's address is identified, we subtract the libc.symbols['write'] value from it to get the base address of libc.

  • Identify system() Function

    With libc_base, we can find the system() function's address and eventually gain a shell using /bin/sh.

  • Exploit Execution

    The provided remote exploit code demonstrates how to:

  • Bypass stack guard pages by sending a payload that triggers the stack overflow.
  • Update the return address to point to the write function's address.
  • Read the leaked memory address to find the write function's base, hence determining the libc_base.
  • Use system() for shelling out by leveraging binsh from libc.
  • By following these steps, a full RDI (Remote Differential Exploit) can be achieved, allowing for full control over the system.

    转载地址:http://amppz.baihongyu.com/

    你可能感兴趣的文章
    Mysql学习总结(19)——Mysql无法创建外键的原因
    查看>>
    Mysql学习总结(19)——Mysql无法创建外键的原因
    查看>>
    Mysql学习总结(1)——常用sql语句汇总
    查看>>
    Mysql学习总结(20)——MySQL数据库优化的最佳实践
    查看>>
    Mysql学习总结(21)——MySQL数据库常见面试题
    查看>>
    Mysql学习总结(22)——Mysql数据库中制作千万级测试表
    查看>>
    Mysql学习总结(23)——MySQL统计函数和分组查询
    查看>>
    Mysql学习总结(24)——MySQL多表查询合并结果和内连接查询
    查看>>
    Mysql学习总结(25)——MySQL外连接查询
    查看>>
    Mysql学习总结(26)——MySQL子查询
    查看>>
    Mysql学习总结(27)——Mysql数据库字符串函数
    查看>>
    Mysql学习总结(28)——MySQL建表规范与常见问题
    查看>>
    Mysql学习总结(29)——MySQL中CHAR和VARCHAR
    查看>>
    Mysql学习总结(2)——Mysql超详细Window安装教程
    查看>>
    Mysql学习总结(30)——MySQL 索引详解大全
    查看>>
    Mysql学习总结(31)——MySql使用建议,尽量避免这些问题
    查看>>
    Mysql学习总结(32)——MySQL分页技术详解
    查看>>
    Mysql学习总结(33)——阿里云centos配置MySQL主从复制
    查看>>
    Mysql学习总结(35)——Mysql两千万数据优化及迁移
    查看>>
    Mysql学习总结(36)——Mysql查询优化
    查看>>