博客
关于我
攻防世界-pwn-200-Writeup
阅读量:572 次
发布时间:2019-03-09

本文共 2103 字,大约阅读时间需要 7 分钟。

pwn-200 Vulnerability Analysis

Overview of the Issue

The sub_8048484 function in the provided code is vulnerable to a stack overflow attack. This function reads data into a buffer using read(0, &buf, 0x100u) which can cause a stack overflow if not handled correctly. The vulnerable code is:

ssize_t sub_8048484() {    char buf;    setbuf(stdin, &buf);    return read(0, &buf, 0x100u); // Overflow here}

Exploiting the Vulnerability

To exploit this vulnerability, we need to analyze how the stack buffer works. The function uses a single-byte buffer and attempts to read data directly into the stack without proper bounds checking. Exploiting this requires understanding how the stack is structured and how overflow affects it.

The key to this exploit is to identify the location where the return address is stored after the stack overflow. By overwriting the return address, we can control the program's flow and gain arbitrary code execution.

Finding libc Base

Using the provided exploit code, the following steps can be taken:

  • Identify the libc base

    After successful exploitation, we can leak the memory address of the write function from libc6-i386_2.23-0ubuntu11_amd64.so. This is done by sending a crafted payload that forces the program to use the overwritten return address as the write function's target.

  • Calculate libc_base

    Once the write function's address is identified, we subtract the libc.symbols['write'] value from it to get the base address of libc.

  • Identify system() Function

    With libc_base, we can find the system() function's address and eventually gain a shell using /bin/sh.

  • Exploit Execution

    The provided remote exploit code demonstrates how to:

  • Bypass stack guard pages by sending a payload that triggers the stack overflow.
  • Update the return address to point to the write function's address.
  • Read the leaked memory address to find the write function's base, hence determining the libc_base.
  • Use system() for shelling out by leveraging binsh from libc.
  • By following these steps, a full RDI (Remote Differential Exploit) can be achieved, allowing for full control over the system.

    转载地址:http://amppz.baihongyu.com/

    你可能感兴趣的文章
    nginx css,js合并插件,淘宝nginx合并js,css插件
    查看>>
    Nginx gateway集群和动态网关
    查看>>
    Nginx Location配置总结
    查看>>
    Nginx log文件写入失败?log文件权限设置问题
    查看>>
    Nginx Lua install
    查看>>
    nginx net::ERR_ABORTED 403 (Forbidden)
    查看>>
    Nginx SSL私有证书自签,且反代80端口
    查看>>
    Nginx upstream性能优化
    查看>>
    Nginx 中解决跨域问题
    查看>>
    nginx 代理解决跨域
    查看>>
    Nginx 动静分离与负载均衡的实现
    查看>>
    Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
    查看>>
    nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>
    Nginx 反向代理配置去除前缀
    查看>>
    nginx 后端获取真实ip
    查看>>
    Nginx 多端口配置和访问异常问题的排查与优化
    查看>>
    Nginx 如何代理转发传递真实 ip 地址?
    查看>>
    Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
    查看>>
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>